Список предметов

Математика
Литература
Алгебра
Русский язык
Геометрия
Английский язык
Химия
Физика
Биология
Другие предметы
История
Обществознание
География
Українська література
Українська мова
Казак тили
Беларуская мова
Информатика
Экономика
Право
Доказать,что при любом нечетном а выражение a^4+7(2a^2+7) делится на 64
спросил от в категории Алгебра

1 Ответ

A^4+7(2a^2+7) = (a^2+7)^2
если а - нечетное, то а=2*b+1 где b - целое

a^2+7=(2*b+1)^2+7=4b^2+4b+8=4*(b^2+b+2)

если b - четное , то b^2 - четное, b^2+b+2 - четное, 4*(b^2+b+2) - делится на 8
если b - нечетное , то b^2 - нечетное, b^2+b+2 - четное, 4*(b^2+b+2) - делится на 8

4*(b^2+b+2) - делится на 8 при любых целых b

значит a^4+7(2a^2+7) =  (4*(b^2+b+2))^2  - делится на 64 при любых целых b










ответил от
x
...