Список предметов

Математика
Литература
Алгебра
Русский язык
Геометрия
Английский язык
Химия
Физика
Биология
Другие предметы
История
Обществознание
География
Українська література
Українська мова
Казак тили
Беларуская мова
Информатика
Экономика
Право
Найдите корни уравнения cos(3x-pi/2)=1/2 принадлежащей полуинтервалу (pi ; 3pi/2)
3pi/2 включается

спросил от в категории Алгебра

1 Ответ

Омогите с алгеброй, умоляю
вычислите
а) 3arcctg (-√3/3) + 1/2arccos √2/2 =-3*π/3+1/2*π/4=-π+π/8=-7π/8
б) tg (arccos √3/2 - 1/2arcctg 1/√3)= tg(π/6-1/2*π/3)= tg0=0

решите уравнение
а) 2cos^2 x + 5sinx - 4 = 0
2(1- sin²x) + 5sinx - 4 = 0
-2 sin²x+ 5sinx-2=0
у= sinx- замена
-2у²+5у-2=0
Д=5²-4*(-2)*(-2)=9
х₁=-5+√9/2*(-2)=-5+3/-4=-2/-4=1/2
х₂=-5-√9/2*(-2)=-5-3/-4=-8/-4=2
sinx=1/2 либо sinx=2
х=(-1)ⁿπ/6+πn либо решений нет, т. к. -1≤ sinx≤1
Ответ: х=(-1)ⁿπ/6+πn
б) sin^2 x + cosx sinx = 0
sin^2 x(1+ctgх) =0
sinx=0 либо сtgх=-1
х=πn либо х=-π/4+πn
найдите корни уравнения
cos(3x-pi/2)=1/2
sin3x=1/2
3х=(-1)ⁿπ/6+πn
х=(-1)ⁿπ/18+πn/3
n=4
х=(-1)⁴π/18+π4/3=25π/18
n=-3
х=(-1)⁻³π/18+π(-3)/3=-19π/18
принадлежащие интервалу (pi; 3pi/2]
ответил от
x
...